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Goal-oriented scheme for taming chaos with a weak periodic perturbation:
Experiment in a diode resonator
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We employed the concept of Shannon entropy to characterize the periodicity of the output wave form of a
modulated nonlinear diode resonator. A goal-oriented scheme for taming chaos with a weak periodic pertur-
bation is experimentally demonstrated. It is found that a resonancelike regularity is exhibited when the per-
turbation frequency,, follows f,,=f,/n, wheref, is the modulation frequency amdis an integer. Whef,,
is roughly equal td ,,/n andn is small, there exists a low-period orbit, while a largeresults in a high-period
orbit. The perturbation’s intensity can change the periodicity dramatically; howevédt, &schosen to be
f/n*, the smallest periodicity of the output wave formn%. This regularity disappears asbecomes too
large (~1000 and other dynamics takes pla¢81063-651X96)04808-9

PACS numbd(s): 05.45+b

In the past few years there has been a lot of theoreticdbllows H(S)=—-X 19:1Pj log, P; . As an example, referring
and experimental works exploring the field of controlling to the boxes shown in Fig. 1, there are two different types of
chaos. Practical implementation of mastering chaos has begrriod-3 attractors. They are noted B for the upper box
of great interest and importan¢&]. One of the advantages and By for the lower one. If we take the maxima
of controlling chaos is that a variety of unstable periodicas the information events, the sourcBg and By emit
orbits embedded in a chaotic attractor can be stabili2éd the sequences{a,,b;,c,,...} where a;#b,;#c; and
Since the desired periodic orbit can be stabilized, this means,,b,,c,,...} where a,=b,#c,, respectively. Thus, for
that chaos can be utilized for the use of a novel functionaB,, P(a;)=P(b;)=P(c,)=1/3 and H(B,)=1.585. For
generator without greatly modifying the system. This hasB,, P(a,)=2/3(a,=b,), P(c,)=1/3, andH(B,4)=0.918.
been emphasized by Ott, Grebogi, and Yo(k¥GY) and  Therefore, we can distinguish these two different attractors
their OGY method has been a classical means in the field dfy the value of the Shannon entropy. However, by this way
controlling chaog?2]. However, in response to the dynamics
of a high-speed system the OGY method requires a fast
enough feedback mechanism that may be impractical for 3.0
implementation. This difficulty actually occurs to almost all
control schemes that are based on feedback or a closed-loop
configuration. On the other hand, Braiman and Goldhirsch INs402
(BG) theoretically illustrate a nonfeedbackopen-loop L =750mH
schemd 3] for creating periodic orbits as an alternative way
of controlling chao$4]. It is shown that taming chaos can be R=1KQ
achieved simply by introducing a suitable weak periodic per- 20 } L R -
turbation to the system. The method proposed by BG is at-
tractive because its implementation in real experiments, par-
ticularly high-speed systems, is simple. Strictly speaking, the
BG scheme is not a control scheme. As indicated in Rdf.
there exists a serious weakness in the BG method; i.e., the
output is unpredictablds it possible to remove this weak-
ness? Is it possible to develop a goal-oriented scheme for
taming chaos with a weak periodic perturbatibWe re- . .
cently have shown theoretically such a possibil#y. In this .
paper, we will experimentally demonstrate the proposed [W\A .
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Experimental Set

=

Shannon entropy

scheme in a nonlinear diode resonator.

First, we should briefly summarize our previous wsk [

Essentially, we treat a time series as a symbol sequence from
an information source. Suppose that we have such an infor-

mation sourceS, which can generate a set of different sym- 0.0 1 5 3 4 s e
bols {s;,s;,S3,...,.S¢} with the probability of occurrence Periodicity
{P(s1),P(s2),P(s3),-..,P(sq)}- The Shannon entropyl (S)

FIG. 1. The values of Shannon entropy at different periodicity. A wave
form within one circle is shown in the box for illustratiqisee text The
) ) experimental setup is shown in the upper portion wigbreneans the main
*Address after August 1996: Department of Physics, Nationakignal source;S2: the weak signal source controlled by the LabVIEW
Cheng Kung University, Tainan 701, Taiwan, Republic of China. through a GPIB interface; DAQ: data acquisition board.
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0.1 1.1 2.1 3.1 4.1 5.1 6.1 FIG. 4. Variation of entropy value with perturbation frequency where

fm="6.0 kHz andA,=20.0 ;. (8 n="5 with A,=0.7 V,;; (b) n=2 with
A,=1.3V,,; (¢) n=6 with A,=1.83 V,; and(d) n=20 with A, =1.72
Y,

Shannon entropy H (bit)
FIG. 2. (a) A two-dimensional diagram of entropy distribution. The p-p-
axis andy axis show the amplitude and frequency of applied weak pertur-
bation. The solid square is for 20H < 2.5 whereH is the Shannon entropy.
The empty square, solid circle, and empty circle are for<24#<3.0,
3.0<H<3.5, and 3.5H<4.0, respectively. The diamond shows 41

<4.5 and the dotted point indicates 451<<5.0. ForH=5.0, no label has (a) (b)
been made(b) The histogram of the perturbed states in terms of entropy 10 10 ﬂ
value.
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of calculation, a one-to-one correspondence between the pe- 3
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cisely identify the periodicity. Nevertheless, we always can ' ‘
remove this ambiguity by defining a different kind of Shan- vy Ty U[J U UU VU U

non entropy. Practically, the use of the Shannon entropy of-
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FIG. 5. Regular time series appear near the resonancelike regins.
FIG. 3. Time series of a tamed period-20 orbit. The parameters are=3 andA,=1.53 V,,; (b) n=5 andA,=0.73 ,,;; and(c) n=11 and
fu="7.6 kHz,A;;=20.0 V,,, f,,=3.199 kHz, and\,=1.72 V, ,. Ay=15V,,.
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FIG. 6. The distribution region of output wave form with smallest peri-
odicity in terms off,, andA,, wheref;,,=6.0 kHz andA,,=20.0 V,,. The
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fied. After this, by dividingN; with N, we determine the
probability P; and calculate the Shannon entrdpywhich is
defined above. In step 3, we switch to the next parameter and
return to step 1 to search the region of a lower entropy value.
In our experiment, the complexity of a wave form is indi-
cated by measuring the entropy. We can lead the system
away from chaos by adopting some condition statements in a
searching program. Practically, we first take four trials to
determine the entropy in the nearby region of the initial pa-
rameters and drive the system to the region of the lowest
entropy. By repeating this procedure we gradually direct the
system toward the desired periodic region. Since it is the
periodic region that we are searching, we do not need to
accumulate a large amount of data in calculating the entropy.
We should note that the Shannon entropy determined here is
resolution dependent. If the resolution is low, we may mis-
take a high-period attractor for a lower-period attractor. That
becomes a problem especially when we want to use the Sh-
annon entropy to identify high periodicity or when the noise
exists. Generally, we should choose the highest resolution
that we possibly can.

In the following, we first report our experimental setup.
Referring to Fig. 1, the resonator circuit consists of a silicon
rectifier in series with an inductor. We use the diode 1N5402
and a 750-mH inductor with 1€k dc resistor. This system
exhibits a classical period-doubling sequence as it is driven
with a sinusoidal voltagd6]. We denote the driven fre-
guency and amplitude s, andA,,. An additional driving
signal will be used as a weak perturbation. For this weak

number in parentheses is the corresponding periodicity directly identified byp€riodic perturbation, we label the frequency and amplitude

time series.

asf, andA,. For automatic searching, we run our experi-
ment with the software NI LabVIEW. The time series of the

fers a convenient and efficient way to monitor the periodicityvoltage across the resistor is sampled by a data acquisition
of the attractor as shown below.
Next, we summarize our searching procedure. In step 1Ry programming with NI LabVIEW. The number of sampled

we take the data of the time series, S&ft), with some
starting parameter value and pick NBsuccessive maxima of
X(t), i.e., {X;} (i=1,2,3...,N). In step 2, we classify these
X; according to their values, and then count the numbé; of
appearing in each group. We label them Hs$ where
i=1,2,3...,M andM is the number of groups being classi-
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FIG. 7. Bifurcation diagram and Shannon entropy diagram for a modi-
fied logistic mapping.(@) Driven by a period-2 orbit;(b) driven by a
period-4 orbit; andc) driven by a period-8 orbit. We useto represent the

perturbation intensity.
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board and the peak voltagémnd the entropyare determined

peaks is 700 here. We adopted the resolution 0.02 V here. In
the course of the experiment, we always keep the highest
sampling rate of 200 kHz.

Next, we report the experimental result. We $g&=7.6
kHz andA,=20.0 \,, (p-p denotes peak to peak; i.e., the
wave form oscillates between 10 anrdl0 V). With this
condition, chaos appears. We further apply a weak perturba-
tion to the circuit. By varying the weak signal, we derive a
phase diagram as shown in Figag which contains 9600
perturbed states. One can see that various wave forms have
been generated. To explore the feature quantitatively, we
count each perturbed state according to the entropy. After
dividing with the total number of perturbed states, we derive
a histogram. As shown in Fig(l3), a high value in distribu-
tion promises a high probability of finding correspondent
periodic orbit. If we start our searching randomly, we can
estimate the searching efficiency based on such a distribu-
tion. As indicated by the down arrows in Fig(h?, low-
period orbits can be created whereas the high-period orbits,
corresponding to high entropy value, can also be excited. A
typical example of a period-20 orbit is shown in Fig. 3 in
which the period is indicated by two successive down ar-
rows. This contradicts the previously recognized idea that
high-period orbits are impossible to create by making only
one correction in the long period because of the inherent
nature of chao$7]. These results show that to create and
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search the desired periodic orbits is rather promising proinvestigation, we vary the perturbation’s intensity. It seems
vided that there is a suitable distribution. to us that the smallest periodicity i§ . We present a part of

It is worthwhile to note that there appears a large portiorthe evidence in Fig. 6.
of periodic region neaf,=2.53 kHz that is very close to ~ For comparison, we also adopt some other theoretical
f /3. (Note thatf ,= 7.6 kHz) It implies that some regularity models[5] for investigation. Here, for simplicity, we present
may occur wherf,, = f,./n, wheren is a certain integer, such our result of the modified logistic mapping. The equations
as 2,3,4. ... Qualitatively, it seems that the system exhibits &€

a resonancelike featuf&], which can be well characterized Xnr1=r1 X, (1=X,) =AY, (0]
by the drop of Shannon entropy as shown below. The varia- B
tion of the Shannon entropy shown in FigaRsuggests that Yoe1=r2Yn(1=Yn). @)

the periodicity of the output wave form depends not only onyye setr,=3.9. AsA=0, chaos appears féX,}. We change

the frequency of weak perturbation but also on the ampliy, to generate the time series6f with a specific periodicity
tude. Actually, some nontrivial features can be revealed by, sayp=2 or 4. After transient, we use only 5Q, to make
exploring the resonancelike region, particularly with the helpthe bifurcation diagram and 104, for the Shannon entropy

of the Shannon entropy characterization. For an illustrationdiagram. One can see that the chaos is suppressed and trans-
we take f;,=6.0 kHz andA,=20.0 V,, and vary the formed into various dynamic states for differext Let us

fy, and A,. As shown in Fig. 48, a drop of the look at Fig. 1a) where the periodicity ofY,} is 2. As indi-
Shannon entropy appearsfgt=f /5. In Fig. 4b), a similar  cated by the down arrow, one can see that the smallest peri-
feature is exhibited for a lower asf,=f, /2. Again, in Fig.  odicity of the output wave form, i.e{X,}, is 2. This is
4(c), a deeper drop appears ndgy=f,/6. Highern also  exactly the same as the periodicity 6f . This feature also
appears just as commonly. As shown in Figd)4a deeper can be seen, e.g., when the periodicity| %f,} is 3. It should
drop of the Shannon entropy occurs to the region neabe noted that there are some empty regions in the diagrams
fw="Tfn/20. On can clearly see that a high Shannon entropyf Fig. 7. These appear simply becavggis out of the range
value is associated with the region with highThis suggests of [0,1]. We have checked the periodicity &f, up to 16.

that by using a largen for f,,=f./n, one can create a high- Unfortunately, to clarify the general features, there remains
period orbit. We verify this statement by a direct investiga-much work to be done.

tion of time series. As shown in Fig.(®, an output wave In conclusion, we have demonstrated the experimental
form with periodicity p=3 occurs forf,/f,,=0.334. Here feasibility of the proposed scheme described in K&f. This
f/fw=n=3. Another example ip=5, which is exhibited work shows the robustness of the proposed scheme in a real
in the system ag,/f,,=0.2. Heref/f,=n=5. It will be  system. It should be remarked that by using different types of
very useful to show a highgn. We show an output wave weak perturbations, such as square, triangle, and ramp wave
form with periodicity p=11, which occurs when forms, and different chaotic states as the target of perturba-
fu/fm=0.091. Heren=11. However, as becomes too large tion, we have derived a series of bifurcation diagrams and
(~1000, i.e., f,, becomes only a few Hz, a completely dif- histograms. It seems safe to conclude that a weak periodic
ferent dynamics takes place. Specifically, there appears a ciperturbation usually results in high-period orbits or even
culation among differenfunstablg attractors. This is similar chaos. Low-period orbits occur in the resonancelike regions
to the “breathing effect” reported by Qet al.[9]. Since we provided that the frequency of weak perturbation follows
are unable to provide a clever characterization beyond thé,=f.,/n, wheren is small and the amplitud&,, is suitable.
work of Qu et al.[9], we will not address it here. Roughly, However,n could not be too large. We found that &g is

we can conclude that for a certairy,, by using a weak around a few Hz wheré,, is around a few kHz, the system
perturbation with a frequenc§,=f/n, wheren is almost displays a circulation feature, i.e., differguinstable attrac-

an arbitrary integer, one can generate some regular wavers that can be identified rather clearly appear successively
form provided that the amplitude is suitable. Since the amand repeatedly. Nevertheless, it is possible to excite the high-
plitude A,, can change the periodicify dramatically, we are period orbit with highn as shown above.

led to consider the following questiokVhat is the smallest This work was partially supported by the National Sci-
periodicity one can obtain for the output wave form when nence Council, R.O.C. under Contract No. NSC 84-2112-
is equal to a specified value, say,nand f,=f.,/n*? For = M110-004.
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