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We employed the concept of Shannon entropy to characterize the periodicity of the output wave form of a
modulated nonlinear diode resonator. A goal-oriented scheme for taming chaos with a weak periodic pertur-
bation is experimentally demonstrated. It is found that a resonancelike regularity is exhibited when the per-
turbation frequencyf w follows f w5 f m/n, wheref m is the modulation frequency andn is an integer. Whenf w
is roughly equal tof m/n andn is small, there exists a low-period orbit, while a largern results in a high-period
orbit. The perturbation’s intensity can change the periodicity dramatically; however, asf w is chosen to be
f m/n* , the smallest periodicity of the output wave form isn* . This regularity disappears asn becomes too
large ~;1000! and other dynamics takes place.@S1063-651X~96!04808-8#

PACS number~s!: 05.45.1b

In the past few years there has been a lot of theoretical
and experimental works exploring the field of controlling
chaos. Practical implementation of mastering chaos has been
of great interest and importance@1#. One of the advantages
of controlling chaos is that a variety of unstable periodic
orbits embedded in a chaotic attractor can be stabilized@2#.
Since the desired periodic orbit can be stabilized, this means
that chaos can be utilized for the use of a novel functional
generator without greatly modifying the system. This has
been emphasized by Ott, Grebogi, and Yorke~OGY! and
their OGY method has been a classical means in the field of
controlling chaos@2#. However, in response to the dynamics
of a high-speed system the OGY method requires a fast
enough feedback mechanism that may be impractical for
implementation. This difficulty actually occurs to almost all
control schemes that are based on feedback or a closed-loop
configuration. On the other hand, Braiman and Goldhirsch
~BG! theoretically illustrate a nonfeedback~open-loop!
scheme@3# for creating periodic orbits as an alternative way
of controlling chaos@4#. It is shown that taming chaos can be
achieved simply by introducing a suitable weak periodic per-
turbation to the system. The method proposed by BG is at-
tractive because its implementation in real experiments, par-
ticularly high-speed systems, is simple. Strictly speaking, the
BG scheme is not a control scheme. As indicated in Ref.@1#,
there exists a serious weakness in the BG method; i.e., the
output is unpredictable.Is it possible to remove this weak-
ness? Is it possible to develop a goal-oriented scheme for
taming chaos with a weak periodic perturbation? We re-
cently have shown theoretically such a possibility@5#. In this
paper, we will experimentally demonstrate the proposed
scheme in a nonlinear diode resonator.

First, we should briefly summarize our previous work@5#.
Essentially, we treat a time series as a symbol sequence from
an information source. Suppose that we have such an infor-
mation sourceS, which can generate a set of different sym-
bols $s1 ,s2 ,s3 ,...,sq% with the probability of occurrence
$P(s1),P(s2),P(s3),...,P(sq)%. The Shannon entropyH(S)

follows H(S)52( j51
q Pj log2 Pj . As an example, referring

to the boxes shown in Fig. 1, there are two different types of
period-3 attractors. They are noted asBu for the upper box
and Bd for the lower one. If we take the maxima
as the information events, the sourcesBu and Bd emit
the sequences$a1 ,b1 ,c1 ,...% where a1Þb1Þc1 and
$a2 ,b2 ,c2 ,...% where a25b2Þc2 , respectively. Thus, for
Bu , P(a1)5P(b1)5P(c1)51/3 and H(Bu)51.585. For
Bd , P(a2)52/3(a25b2), P(c2)51/3, andH(Bd)50.918.
Therefore, we can distinguish these two different attractors
by the value of the Shannon entropy. However, by this way
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FIG. 1. The values of Shannon entropy at different periodicity. A wave
form within one circle is shown in the box for illustration~see text!. The
experimental setup is shown in the upper portion whereS1 means the main
signal source;S2: the weak signal source controlled by the LabVIEW
through a GPIB interface; DAQ: data acquisition board.
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of calculation, a one-to-one correspondence between the pe-
riodicity and the Shannon entropy is lost. We cannot pre-
cisely identify the periodicity. Nevertheless, we always can
remove this ambiguity by defining a different kind of Shan-
non entropy. Practically, the use of the Shannon entropy of-

FIG. 2. ~a! A two-dimensional diagram of entropy distribution. Thex
axis andy axis show the amplitude and frequency of applied weak pertur-
bation. The solid square is for 2.0<H,2.5 whereH is the Shannon entropy.
The empty square, solid circle, and empty circle are for 2.5<H,3.0,
3.0<H,3.5, and 3.5<H,4.0, respectively. The diamond shows 4.0<H
,4.5 and the dotted point indicates 4.5<H,5.0. ForH>5.0, no label has
been made.~b! The histogram of the perturbed states in terms of entropy
value.

FIG. 3. Time series of a tamed period-20 orbit. The parameters are
f m57.6 kHz,Am520.0 Vp-p , f w53.199 kHz, andAw51.72 Vp-p .

FIG. 4. Variation of entropy value with perturbation frequency where
f m56.0 kHz andAm520.0 Vp-p . ~a! n55 withAw50.7 Vp-p ; ~b! n52 with
Aw51.3 Vp-p ; ~c! n56 with Aw51.83 Vp-p ; and ~d! n520 with Aw51.72
Vp-p .

FIG. 5. Regular time series appear near the resonancelike regions.~a!
n53 andAw51.53 Vp-p ; ~b! n55 andAw50.73 Vp-p ; and ~c! n511 and
Aw51.5 Vp-p .
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fers a convenient and efficient way to monitor the periodicity
of the attractor as shown below.

Next, we summarize our searching procedure. In step 1,
we take the data of the time series, sayX(t), with some
starting parameter value and pick upN successive maxima of
X(t), i.e., $Xi% ( i51,2,3,...,N). In step 2, we classify these
Xi according to their values, and then count the number ofXi
appearing in each group. We label them asNj where
j51,2,3,...,M andM is the number of groups being classi-

fied. After this, by dividingNj with N, we determine the
probabilityPj and calculate the Shannon entropyH, which is
defined above. In step 3, we switch to the next parameter and
return to step 1 to search the region of a lower entropy value.
In our experiment, the complexity of a wave form is indi-
cated by measuring the entropy. We can lead the system
away from chaos by adopting some condition statements in a
searching program. Practically, we first take four trials to
determine the entropy in the nearby region of the initial pa-
rameters and drive the system to the region of the lowest
entropy. By repeating this procedure we gradually direct the
system toward the desired periodic region. Since it is the
periodic region that we are searching, we do not need to
accumulate a large amount of data in calculating the entropy.
We should note that the Shannon entropy determined here is
resolution dependent. If the resolution is low, we may mis-
take a high-period attractor for a lower-period attractor. That
becomes a problem especially when we want to use the Sh-
annon entropy to identify high periodicity or when the noise
exists. Generally, we should choose the highest resolution
that we possibly can.

In the following, we first report our experimental setup.
Referring to Fig. 1, the resonator circuit consists of a silicon
rectifier in series with an inductor. We use the diode 1N5402
and a 750-mH inductor with 1-kV dc resistor. This system
exhibits a classical period-doubling sequence as it is driven
with a sinusoidal voltage@6#. We denote the driven fre-
quency and amplitude asf m andAm . An additional driving
signal will be used as a weak perturbation. For this weak
periodic perturbation, we label the frequency and amplitude
as f w andAw . For automatic searching, we run our experi-
ment with the software NI LabVIEW. The time series of the
voltage across the resistor is sampled by a data acquisition
board and the peak voltages~and the entropy! are determined
by programming with NI LabVIEW. The number of sampled
peaks is 700 here. We adopted the resolution 0.02 V here. In
the course of the experiment, we always keep the highest
sampling rate of 200 kHz.

Next, we report the experimental result. We setf m57.6
kHz andAm520.0 Vp-p ~p-p denotes peak to peak; i.e., the
wave form oscillates between 10 and210 V!. With this
condition, chaos appears. We further apply a weak perturba-
tion to the circuit. By varying the weak signal, we derive a
phase diagram as shown in Fig. 2~a!, which contains 9600
perturbed states. One can see that various wave forms have
been generated. To explore the feature quantitatively, we
count each perturbed state according to the entropy. After
dividing with the total number of perturbed states, we derive
a histogram. As shown in Fig. 2~b!, a high value in distribu-
tion promises a high probability of finding correspondent
periodic orbit. If we start our searching randomly, we can
estimate the searching efficiency based on such a distribu-
tion. As indicated by the down arrows in Fig. 2~b!, low-
period orbits can be created whereas the high-period orbits,
corresponding to high entropy value, can also be excited. A
typical example of a period-20 orbit is shown in Fig. 3 in
which the period is indicated by two successive down ar-
rows. This contradicts the previously recognized idea that
high-period orbits are impossible to create by making only
one correction in the long period because of the inherent
nature of chaos@7#. These results show that to create and

FIG. 6. The distribution region of output wave form with smallest peri-
odicity in terms off w andAw where f m56.0 kHz andAm520.0 Vp-p . The
number in parentheses is the corresponding periodicity directly identified by
time series.

FIG. 7. Bifurcation diagram and Shannon entropy diagram for a modi-
fied logistic mapping.~a! Driven by a period-2 orbit;~b! driven by a
period-4 orbit; and~c! driven by a period-8 orbit. We usel to represent the
perturbation intensity.
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search the desired periodic orbits is rather promising pro-
vided that there is a suitable distribution.

It is worthwhile to note that there appears a large portion
of periodic region nearf w52.53 kHz that is very close to
f m/3. ~Note thatf m57.6 kHz.! It implies that some regularity
may occur whenf w5 f m/n, wheren is a certain integer, such
as 2,3,4, . . . .Qualitatively, it seems that the system exhibits
a resonancelike feature@8#, which can be well characterized
by the drop of Shannon entropy as shown below. The varia-
tion of the Shannon entropy shown in Fig. 2~a! suggests that
the periodicity of the output wave form depends not only on
the frequency of weak perturbation but also on the ampli-
tude. Actually, some nontrivial features can be revealed by
exploring the resonancelike region, particularly with the help
of the Shannon entropy characterization. For an illustration,
we take f m56.0 kHz andAm520.0 Vp-p and vary the
f w and Aw . As shown in Fig. 4~a!, a drop of the
Shannon entropy appears atf w5 f m/5. In Fig. 4~b!, a similar
feature is exhibited for a lowern as f w5 f m/2. Again, in Fig.
4~c!, a deeper drop appears nearf w5 f m/6. Higher n also
appears just as commonly. As shown in Fig. 4~d!, a deeper
drop of the Shannon entropy occurs to the region near
f w5 f m/20. On can clearly see that a high Shannon entropy
value is associated with the region with highn. This suggests
that by using a largern for f w5 f m/n, one can create a high-
period orbit. We verify this statement by a direct investiga-
tion of time series. As shown in Fig. 5~a!, an output wave
form with periodicity p53 occurs for f w/ f m50.334. Here
f m/ f w5n53. Another example isp55, which is exhibited
in the system asf w/ f m50.2. Heref m/ f w5n55. It will be
very useful to show a higherp. We show an output wave
form with periodicity p511, which occurs when
f w/ f m50.091. Heren511. However, asn becomes too large
~;1000!, i.e., f w becomes only a few Hz, a completely dif-
ferent dynamics takes place. Specifically, there appears a cir-
culation among different~unstable! attractors. This is similar
to the ‘‘breathing effect’’ reported by Quet al. @9#. Since we
are unable to provide a clever characterization beyond the
work of Qu et al. @9#, we will not address it here. Roughly,
we can conclude that for a certainf m , by using a weak
perturbation with a frequencyf w5 f m/n, wheren is almost
an arbitrary integer, one can generate some regular wave
form provided that the amplitude is suitable. Since the am-
plitudeAw can change the periodicityp dramatically, we are
led to consider the following question.What is the smallest
periodicity one can obtain for the output wave form when n
is equal to a specified value, say n* , and fw5 f m/n* ? For

investigation, we vary the perturbation’s intensity. It seems
to us that the smallest periodicity isn* . We present a part of
the evidence in Fig. 6.

For comparison, we also adopt some other theoretical
models@5# for investigation. Here, for simplicity, we present
our result of the modified logistic mapping. The equations
are

Xn115r 1Xn~12Xn!2lYn , ~1!

Yn115r 2Yn~12Yn!. ~2!

We setr 153.9. Asl50, chaos appears for$Xn%. We change
r 2 to generate the time series ofYn with a specific periodicity
p, sayp52 or 4. After transient, we use only 50Xn to make
the bifurcation diagram and 100Xn for the Shannon entropy
diagram. One can see that the chaos is suppressed and trans-
formed into various dynamic states for differentl. Let us
look at Fig. 7~a! where the periodicity of$Yn% is 2. As indi-
cated by the down arrow, one can see that the smallest peri-
odicity of the output wave form, i.e.,$Xn%, is 2. This is
exactly the same as the periodicity ofYn . This feature also
can be seen, e.g., when the periodicity of$Yn% is 3. It should
be noted that there are some empty regions in the diagrams
of Fig. 7. These appear simply becauseXn is out of the range
of @0,1#. We have checked the periodicity ofYn up to 16.
Unfortunately, to clarify the general features, there remains
much work to be done.

In conclusion, we have demonstrated the experimental
feasibility of the proposed scheme described in Ref.@5#. This
work shows the robustness of the proposed scheme in a real
system. It should be remarked that by using different types of
weak perturbations, such as square, triangle, and ramp wave
forms, and different chaotic states as the target of perturba-
tion, we have derived a series of bifurcation diagrams and
histograms. It seems safe to conclude that a weak periodic
perturbation usually results in high-period orbits or even
chaos. Low-period orbits occur in the resonancelike regions
provided that the frequency of weak perturbation follows
f w5 f m/n, wheren is small and the amplitudeAw is suitable.
However,n could not be too large. We found that asf w is
around a few Hz wheref m is around a few kHz, the system
displays a circulation feature, i.e., different~unstable! attrac-
tors that can be identified rather clearly appear successively
and repeatedly. Nevertheless, it is possible to excite the high-
period orbit with highn as shown above.
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